US009483050B2

a2 United States Patent

Polo et al.

US 9,483,050 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) OUTSOURCING PROCESSING TO A
SELF-PROPELLED DEVICE

(58) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(71) Applicant: Sphero, Inc., Boulder, CO (US)
(72) Inventors: Fabrizio Polo, Boulder, CO (US); (56) References Cited
Hunter James Lang, Broomfield, CO U.S. PATENT DOCUMENTS
(US)
9,008,860 B2* 4/2015 Waldock GO5D 1/0044
(73) Assignee: Sphero, Inc., Boulder, CO (US) 340/4.61
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 . . .
U.S.C. 154(b) by 24 days. Primary Examiner — Yonel Beaulieu
(74) Attorney, Agent, or Firm — Mahamedi IP Law LLP
(21) Appl. No.: 14/620,103
(57) ABSTRACT
(22) Filed: Feb. 11, 2015 Systems and methods are disclosed herein for outsourcing
. o processing operations between a mobile computing device
(65) Prior Publication Data and a self-propelled device. The self-propelled device may
US 2016/0231742 A1~ Aug. 11, 2016 be in operative control by the mobile computing device via
a communication connection. Due to latency in the commu-
(51) Int. CL nication connection, the mobile computing device may
GOSD 1/00 (2006.01) compile a computer code package for transmission to the
G07C 5/00 (2006.01) self-propelled device. Execution of the computer code pack-
Ho4w 4/00 (2009.01) age by the self-propelled device may offset operations
(52) US.CL otherwise performed by the mobile computing device.
CPC GO05D 1/0022 (2013.01); GO5D 1/0016
(2013.01); HO4W 4/008 (2013.01) 20 Claims, 7 Drawing Sheets
- Trick Data Code Code
-;y Trick Log 129 Snippet 3 Package
127 Re‘l"zagds 133 Ou“;s;;:r;ng Code Compiler{ 147 iCode Interface
Triggor 10 145 149
Signal
Memory 126 Written Program
130 Trick 143
Data
s 129 :
—Latency Th"e_sm"ds 132 Codelx\inter Display Control Processor
~=== Maneuver List 134 120 User 135
Qutsource Code 136 Inputs
== Control App 138 Control Interface 121 122
Man‘eDuver Latency
Trick Detection} |, Monitor c()cr:nmt;i‘ds
Module e L_?’t:;zy 125 Latency Data 137
139 Sl | 131 12
S[e)r;i:r e Message “:erlg:glce COM Interface
167 Parser 169 110 i End N
rocess ode
146 4 148 Package
I _ 147
Mobile Computing Periodic | Sensor MU} Code I/
/ Sigl/Fi Interp. Engine P'\r/lo;:j:s
Control 165 | 160 184
Commands
137
{ Command
Engine
170

Drive System
190

i

Self-Propelled
Device 150

Control
Mode
182

US 9,483,050 B2

Sheet 1 of 7

Nov. 1, 2016

U.S. Patent

[4:4%

apoN
[0J3U0D

wWa3sAS aAlQ

06T

3

0ST @d1A8@
pajjadoad-413s

0T ’
mc(wlfs @ BuIdug y N- w \ &
o puewwo)
E LET
spuewwo)
v8l 091 991 [043u0)
3POnN auigu3 dusquy i “14/1815
5520014 . tor | 691 00T @1n2@
SstT sel #ied " Suniandwo) aqo
R EVE R T Josuss | 2lpolad uRNALWo) S1qoN
Y
zflpii.r.it.\.\.\\\
LYT
o8exoed =028 b
3po) $52004d vt
pu3 ort T essol o
eje
2284123 NOD a8essaN n LoMcm
Jlpolad A ¥ s
eusis
i 431 HomH _uo_>_ 6€T
LeT eleq Asuaie S7T >v_ YL anpoy
spuewwo) ouale 79T
Jojluon s uon93aQ WML
103103 Aoune a
1 JaANDUEN
€CT 1T 92BDIU| [0JIUOD gET ddy [o13u0)
mw.MMc_ 9ET 9POD 224NOSINQD
QET n ocT YET 157 Jaanaue
105532044 [043U0D Aeldsig il ZET SPIOYSRIY L ADUSIET mermem
J9ILM PpOD 671
eieq
34 MPUL O€l
WeJlSodd Udilm oz Aoway
3
|eusis -
orl 138811
6T 140 » aINpoAl e 271
30BLIBIUI BPOD | ;spT | JRpdWOD Bpod SURINOSING €€T spJemay
a3eyded . 18ddiug 6CT
Spod 2p0) e1eq oL |

U.S. Patent

Nov. 1, 2016 Sheet 2 of 7

Initiate Control Application To Operate Self-
Propelled Device
200

A

Generate Control Interface And Display On MCD
202

3

Establish Connection With Self-Propelled Device
204

il

Receive User Inputs On Display
206

¥

Translate User Inputs Into Control Commands And
Transmit to Self-Propelled Device
208

¥

Detect Latency In Connection
210

¥

Compile Code Package To Outsource Operations
212

il

Transmit Code Package To Self-Propelled Device
For Execution
214

¥

Receive Periodic Message From Self-Propelled
Device
216

FIG. 2A

US 9,483,050 B2

U.S. Patent

Nov. 1, 2016

Sheet 3 of 7

Receive Sensor Data From Self-Propelled Device
230

Receive Periodic Message From Self-Propelled
Device
265

%

Determine Maneuver Performed By Self-Propelled

Parse Periodic Message To Identify Executed

Device Based On Sensor Data Functions
235 270
Identify Performed Identify State
\é Maneuver(s) Information
271 273
Log Maneuver In Award Points For
DB Maneuver
237 239

|

¥

Detect Latency In Connection
240

2'\207 Threshold
Crossed?
\\\izls
Yes
249

Log Maneuver(s) Device State
In DB Response
272 274

Receive Dynamic User Inputs On Display
275

kil

Dynamically Translate User Inputs Into Control
Commands And Transmit to Self-Propelled Device
280

Determine Operations To Outsource
250

X

3

Receive Input To End Operations
285

Compile Code Package To Outsource Operations
255

X

Pull Code From
Memory/Network
257

Write Custom Code
259

Transmit End Commands To Self-Propelled Device
290

¥,

k:
Transmit Code Package To Self-Propelled Device
For Execution
260

Disable Connection And End Control Operations
295

End Sensor Data
Calculations
239

FIG. 2B

US 9,483,050 B2

U.S. Patent Nov. 1, 2016 Sheet 4 of 7 US 9,483,050 B2

FIG. 3A

U.S. Patent Nov. 1, 2016 Sheet 5 of 7 US 9,483,050 B2

Message IMU
Module 395
375
N
Maneuver Sensor Data

Info 363 E«-«-«- 397

Message #° Sensor Data .
397 Interpretation
Engine ~— Process Mode 384
Code
360
Package y
369
Sig I/F Mem

380

365

e Control Mode 382

Raw Input ¥
Data . ~eee Maneuver Table 386
368 » Command Engine
Control 370
Commands
367 Control Commands
’ 367

Drive System 390

FIG. 3B

U.S. Patent Nov. 1, 2016 Sheet 6 of 7 US 9,483,050 B2

CONTROL MODE
400
Receive Connection Signal From MCD Transmit Sensor Data To MCD
405 - 425
3 ¥
Receive Control Commands From MCD Receive Code Package From MCD
415 430
¥
Impl t Control C ds On Int I Dri -,)
mplement Lontrof Lommangs Ln fnternal Lrive Execute Code Package To Initiate Processing Mode
System — 435
420
PROCESSING MODE
440
¥
Receive Control Commands From MCD Compile Periodic Message For TX To MCD
445 465
I\/Ianeuv_er State Information
. Information 469
Implement Control Commands On Internal Drive 467
System i !
450 é{
- Transmit Periodic Message To MCD
470
Receive Sensor Data From Internal IMU
455
k
. Receive End Command Signal From MCD
475
Analyze Sensor Data To Determine Maneuver(s)]
460
¥
Raw Calculation LuT End Operations And Enter Sleep Mode
461 463 480

FIG. 4B

U.S. Patent

Nov. 1, 2016

Sheet 7 of 7

Processor

U
=
o

Main Memory

Ul
N
o

ROM

ol
w
o

Code
Packaging
512

Sensor Data
Processing
514

Control

Application
522

Maneuver List

US 9,483,050 B2

Storage Device 44
Trick Log
u 546
Connection
Message Si‘injl
Communication 558
Interface 550 Sensor Data Control
— 556 Commands
552
Virtual
Display Controls
560 564
500

Code Package
555

FIG. 5

US 9,483,050 B2

1
OUTSOURCING PROCESSING TO A
SELF-PROPELLED DEVICE

BACKGROUND

Remote controlled devices have previously been operated
using specialized remote controllers specific to a particular
device. With the onset of network technology, mobile appli-
cation development, and mufti-functional mobile devices,
the field of operating and controlling such remote controlled
devices is broadening. Furthermore, self-propelled devices
can include internal processing resources to perform any
number of operations.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure herein is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings in which like reference numerals refer to
similar elements, and in which:

FIG. 1 is a block diagram illustrating an example mobile
computing device outsourcing programmatic operations to a
self-propelled device;

FIG. 2A is a high level flow chart describing an example
method of outsourcing programmatic operations to a self-
propelled device;

FIG. 2B is a low level flow chart describing an example
method of outsourcing programmatic operations to a self-
propelled device;

FIG. 3A is schematic diagram illustrating components of
an example self-propelled device;

FIG. 3B is a block diagram illustrating an example
self-propelled device upon which one or more example
described herein may be implemented;

FIG. 4A is a flow chart describing example operations
performed by a self-propelled device in control mode, in
accordance with one or more examples described herein;

FIG. 4B is a flow chart describing example operations
performed by a self-propelled device in processing mode, in
accordance with one or more examples described herein;
and

FIG. 5 is a block diagram that illustrates a computer
system upon which examples described may be imple-
mented.

DETAILED DESCRIPTION

Systems and methods are provided for outsourcing pro-
cessing operations between a mobile computing device and
a self-propelled device under control of the mobile comput-
ing device. During operation, a connection is established
between the mobile computing device and the self-propelled
device in order to transmit control commands to be imple-
mented on a drive system of the self-propelled device.
Additional data may be transmitted between the devices,
such as sensor data from an inertial measurement unit of the
self-propelled device. These transmissions can cause latency
in the connection that can disrupt the control commands and
interrupt the dynamically smooth control of the self-pro-
pelled device. For example, data traffic between the self-
propelled device and the mobile computing device may
cause the mobile computing device or the self-propelled
device to begin buffering transmissions or otherwise delay
control transmissions.

The mobile computing device can outsource certain
operations to the self-propelled device automatically due to
an anticipated latency in the connection. For example, the

20

40

45

2

mobile computing device can establish a Bluetooth low
energy connection with a self-propelled device which
requires processing of sensor data from the self-propelled
device. Instead of receiving a periodic or continuous stream
of'sensor data from the self-propelled device, the sensor data
processing may be outsourced to the processing resources of
the self-propelled device. In such implementations, a peri-
odic message can be compiled by the self-propelled device
and transmitted to the mobile computing device, resulting in
significant reduction in bandwidth usage. Additionally or
alternatively, the mobile computing device may be enabled
to detect when latency occurs in the connection and deter-
mine a number of operations that may be outsourced to the
self-propelled device. For example, a near-continuous
stream of sensor data from the self-propelled device may
take up valuable bandwidth which could otherwise be uti-
lized for sending dynamic control commands to the self-
propelled device. However, the sensor data may be neces-
sary to make computations involving the state of the self-
propelled device, or to determine maneuvers and/or tricks
performed by the self-propelled device. Thus, the mobile
computing device may compile a code package to be
executed by the self-propelled device to outsource one or
more operations performed by the mobile computing
device—such as calculations or look-ups involving maneu-
vers performed by the self-propelled device.

The self-propelled device may receive and decompress
the code package to execute the code compiled by the
mobile computing device. Execution of the code may cause
the self-propelled device to perform a number of operations
otherwise performed by the mobile computing device, such
as utilizing the sensor data, from an inertial measurement
unit of the self-propelled device, in order to calculate or
otherwise determine maneuvers performed by the self-pro-
pelled device while under control. Such maneuvers may be
logged in a local memory or compiled into a message to be
transmitted back to the mobile computing device. Such
maneuvers may be predefined according to a gaming appli-
cation in which select maneuvers earn particular user credits
or points based on the game.

One or more examples described herein provide that
methods, techniques, and actions performed by a computing
device are performed programmatically, or as a computer-
implemented method. Programmatically, as used herein,
means through the use of code or computer-executable
instructions. These instructions can be stored in one or more
memory resources of the computing device. A programmati-
cally performed step may or may not be automatic.

One or more examples described herein can be imple-
mented using programmatic modules or components of a
system. A programmatic module or component can include
a program, a sub-routine, a portion of a program, or a
software component or a hardware component capable of
performing one or more stated tasks or functions. As used
herein, a module or component can exist on a hardware
component independently of other modules or components.
Alternatively, a module or component can be a shared
element or process of other modules, programs or machines.

Some examples described herein can generally require the
use of computing devices, including processing and memory
resources. For example, one or more examples described
herein can be implemented, in whole or in part, on comput-
ing devices such as digital cameras, digital camcorders,
desktop computers, cellular or smart phones, personal digital
assistants (PDAs), laptop computers, printers, digital picture
frames, and tablet devices. Memory, processing, and net-
work resources may all be used in connection with the

US 9,483,050 B2

3

establishment, use, or performance of any example
described herein (including with the performance of any
method or with the implementation of any system).

Furthermore, one or more examples described herein may
be implemented through the use of instructions that are
executable by one or more processors. These instructions
may be carried on a computer-readable medium. Machines
shown or described with figures below provide examples of
processing resources and computer-readable mediums on
which instructions for implementing examples can be car-
ried and/or executed. In particular, the numerous machines
shown with examples include processor(s) and various
forms of memory for holding data and instructions.
Examples of computer-readable mediums include perma-
nent memory storage devices, such as hard drives on per-
sonal computers or servers. Other examples of computer
storage mediums include portable storage units, such as CD
or DVD units, flash memory (such as carried on smart
phones, multifunctional devices or tablets), and magnetic
memory. Computers, terminals, network enabled devices
(e.g., mobile devices, such as cell phones) are all examples
of machines and devices that utilize processors, memory,
and instructions stored on computer-readable mediums.
Additionally, examples may be implemented in the form of
computer-programs, or a non-transitory computer usable
carrier medium capable of carrying such a program.

System and Device Description

FIG. 1 is a block diagram illustrating an example mobile
computing device outsourcing programmatic operations to a
self-propelled device. The mobile computing device 100 can
initiate a connection to operate the self-propelled device
150. In accordance with many examples, a user of the
mobile computing device 100 can launch a control applica-
tion 138, specific to controlling the self-propelled device
150, by interacting with a display 120 of the mobile com-
puting device 100. Upon establishing a control connection
(e.g., by launching the control application 138), a control
interface 121 may be generated by the mobile computing
device 100 and displayed to the user. The control interface
121 can include virtual controls to enable the user to operate
the self-propelled device 150.

User inputs 122 on the control interface 121 can be
processed by a control processor 135 of the mobile com-
puting device 100. The control processor 135 can receive the
user inputs 122 for translation into control commands 137
for direct implementation on a drive system 190 of the
self-propelled device 150. Such translated control com-
mands 137 can be transmitted to a communication interface
110 of the mobile computing device 100 for transmission to
the self-propelled device 150 over the established connec-
tion.

The control commands 137 can be received by the self-
propelled device 150 via a signal interface 165, which can
transmit the control commands 137 to a command engine
170 included with the self-propelled device 150. The com-
mand engine 170 can then implement the control commands
137 on the drive system 190 of the self-propelled device 150
in order to cause the self-propelled device 150 to be maneu-
vered in accordance with the user inputs 122 on the control
interface 121.

In variations, the user inputs 122 may be transmitted
directly to the self-propelled device 150 for processing. In
such implementations, the self-propelled device 150 can
include processing logic implemented by the control pro-
cessor 135, and perform translation of the user inputs 122
into control commands 137 to be implemented on the drive
system 190.

10

15

20

25

30

35

40

45

50

55

60

65

4

In various examples, the established connection between
the mobile computing device 100 and the self-propelled
device 150 can be established in accordance with one or
more of a variety of wireless network technologies, includ-
ing Bluetooth low energy, Classic Bluetooth, Wireless USB,
and various Wi-Fi or other wireless standards. In many
implementations, the established connection between the
mobile computing device 100 and the self-propelled device
150 may have limited bandwidth (e.g., Bluetooth low
energy). Accordingly, transmission delays or data buffering
may result from additional data transmissions over the
connection. For example, the self-propelled device 150 can
include a number of sensors to provide feedback to the
mobile computing device 100. Such sensors can include, for
example, a three-axis gyroscope, accelerometer(s), magne-
tometer(s), temperature sensor(s), ambient light detectors,
and the like. Sensor data 167 from such sensors may be
transmitted back to the mobile computing device 100 in
either a streaming fashion or intermittently. For dynamic
operation of the self-propelled device 150, this sensor data
167 may consume valuable bandwidth that could otherwise
be used for transmitting control commands 137 or other
data.

In some aspects, the connection may be established for
purposes of not only operating the self-propelled device 150,
but also utilizing the sensor data 167 to identify or determine
a number of actions performed by the self-propelled device
150. For example, the sensor data 167 can include state
information describing the state of one or more components
(e.g., the remaining battery power) of the self-propelled
device 150. Additionally or alternatively, an inertial mea-
surement unit 195 that includes a number of the sensors can
be utilized to stream or intermittently transmit sensor data
167 to the mobile computing device 150 while under opera-
tion.

In some implementations, a user may operate the self-
propelled device 150 under task oriented conditions, such as
in a gaming or research/experimental environment. In such
implementations, the mobile computing device 100 may
require feedback updates (e.g., sensor data 167) from the
self-propelled device 150 regarding, for example, maneu-
vers performed or state information. Furthermore, the
mobile computing device 100 may utilize the sensor data
167 in order to perform calculations to determine which
maneuvers the self-propelled device 150 has performed.

In some examples, the mobile computing device 100 can
include a trick detection module 139 that can receive the
sensor data 167 and perform calculations to determine
maneuvers performed by the self-propelled device 150. For
example, the trick detection module 139 may be pro-
grammed to receive sensor data 167 from the inertial mea-
surement unit 195 and determine specific maneuvers per-
formed by the self-propelled device 150 based on the sensor
data 167. A memory 130 of the mobile computing device
100 can include a maneuver list 134 (e.g., a look-up table)
in which the trick detection module 139 can make compari-
sons to determine a specified maneuver based on the raw
sensor data 167. As such, the trick detection module 139 can
pull a maneuver identifier 142, corresponding to received
sensor data 167, from the memory 130 and log the per-
formed maneuver as trick data 129 in a trick log 127.

According to one or more examples, the trick detection
module 139 can reset the trick log 127 based on each launch
of the control application 138. In such examples, trick data
129 is accumulated only for each control session initiated by
the user. Additionally or as an alternative, the trick detection
module 139 can initiate a timer and reset the trick log 127

US 9,483,050 B2

5

after a predetermined amount of time during a control
session. Further still, the trick detection module 139 can
continuously accumulate trick data 129 through control
sessions, such that the trick log 127 can contain all maneu-
vers or tricks performed by the user operating the self-
propelled device 150.

In some examples, the trick detection module 139 may
also issue rewards 128 to the user for performing certain
tricks/maneuvers. Such rewards 128 may be financial
rewards, user credits, gaming points, online currency, appli-
cation-based currency, and the like. For example, in gaming
implementations, a number of points may be issued to the
user for causing the self-propelled device 150 to perform
any number of predefined maneuvers. These points (i.e.,
rewards 128) may be accumulated in the trick log 127.
Additionally, the trick log 127 can store historical trick data
129 and rewards 128 based on the user’s previous sessions.

Additionally or as an alternative, the trick detection
module 139 can make various other determinations based on
the sensor data 167, and utilize such data 167 to cause one
or more components of the self-propelled device 100 to
implement a response. As an example, the trick detection
module 139 can receive sensor data 167 indicating that the
self-propelled device 150 has entered a processing mode
184, in which the trick detection module’s 139 operations
are to be performed by the self-propelled device 150. In such
examples, the trick detection module 139 can disable pro-
cessing of sensor data 167 and be placed on standby for
receipt of incoming communications (e.g., a periodic mes-
sage 169 from the self-propelled device 150).

Transmitting the sensor data 167 to the mobile computing
device 100 may take up valuable bandwidth that may cause
disruption in the dynamic operation of the self-propelled
device 150. For example, in Bluetooth low energy imple-
mentations, transmission of the sensor data 167 may cause
the mobile computing device 100 to delay transmission of
control commands 137, which may result in control inter-
ruptions for the self-propelled device 150.

To address such issues, the mobile computing device 100
can outsource certain operations to the self-propelled device
150 automatically due to this anticipated latency in the
connection. For example, the mobile computing device 100
can establish a Bluetooth low energy connection with a
self-propelled device 150 which requires processing of
sensor data 167 from the self-propelled device 150. Instead
of receiving a periodic or continuous stream of sensor data
167 from the self-propelled device 150, the sensor data
processing may be outsourced to the processing resources of
the self-propelled device 150. In such implementations, a
periodic message 169 can be compiled by the self-propelled
device 150 and transmitted to the mobile computing device
100, resulting in significant reduction in bandwidth usage.

Additionally or alternatively, the mobile computing
device 100 may be enabled to detect when latency occurs in
the connection and determine a number of operations that
may be outsourced to the self-propelled device 150. For
example, a near-continuous stream of sensor data 167 from
the self-propelled device 150 may take up valuable band-
width which could otherwise be utilized for sending
dynamic control commands 137 to the self-propelled device
150. However, the sensor data 167 may be necessary to
make computations involving the state of the self-propelled
device 150, or to determine maneuvers and/or tricks per-
formed by the self-propelled device 150. Thus, the mobile
computing device 100 may compile a code package 147 to
be executed by the self-propelled device 150 to outsource
one or more operations performed by the mobile computing

20

25

30

40

45

6

device 100—such as calculations or look-ups involving
maneuvers performed by the self-propelled device 150.

In accordance with many examples, the mobile comput-
ing device 100 can include a latency monitor 125 to analyze
the connection in order to determine whether latency exists.
The latency monitor 125 can monitor the communication
interface 110 and/or receive input from the control processor
135 in order to identify when control commands 137 are
being delayed. This latency data 112 can be detected by the
latency monitor 125, which can cause the mobile computing
device 100 to instigate code packaging to outsource pro-
cessing operations.

Alternatively, the memory 130 of the mobile computing
device 100 can store various latency thresholds 132, which
may each be based on the connection established with the
self-propelled device 150 (e.g., Classic Bluetooth, Bluetooth
low energy, etc.). The latency monitor 125 may take into
account these latency thresholds 132 in order to determine
whether the latency data 112 exceeds the respective latency
threshold 131. When the latency in the connection crosses
the latency threshold 131, the latency monitor 125 can
transmit a trigger signal 126 to an outsourcing module 140,
which can then begin the process of outsourcing operations
away from the mobile computing device 100.

Upon receiving the trigger signal 126, the outsourcing
module 140 can identify the latency in the connection and
determine one or more operations, performed by the mobile
computing device 100, that can be outsourced to the self-
propelled device 150. Thus, the outsourcing module 140 can
essentially identify the data that is being transmitted
between the mobile computing device 100 and the self-
propelled device 150 and determine whether some of that
data is necessary for transmission or whether some the data
can be utilized by either the mobile computing device 100 or
self-propelled device 150 in order to minimize bandwidth
usage.

For variations in which the user inputs 122 are transmitted
directly to the self-propelled device 150 for processing, the
outsourcing module 140 may determine that such transmis-
sions of raw user inputs 122 consumes too much bandwidth,
and therefore cause the control processor 135 to translate the
user inputs 122 into compressed control commands 137 for
transmission to the self-propelled device 150, thereby reduc-
ing bandwidth consumption.

According to many examples, sensor data 167, transmit-
ted from the self-propelled device 150 to the mobile com-
puting device 100 for processing by the trick detection
module 139, consumes a considerable amount of bandwidth.
Thus, the outsourcing module 140 can determine that at least
some of the operations performed by the trick detection
module 139 can be outsourced to the self-propelled device
150. For example, the outsourcing module 140 can deter-
mine that any fraction (e.g., ¥2) of the trick calculations
performed by the trick detection module 139 can be per-
formed by the self-propelled device 150 in order to free up
enough bandwidth to substantially eliminate latency.
Accordingly, the outsourcing module 140 can determine that
say, one-third of the trick detection calculations being out-
sourced to the self-propelled device 150 will eliminate
latency, then the outsourcing module 140 can (i) transmit a
modification signal 144 to the trick detection module 139 to
modify operations accordingly, and (ii) package code to be
transmitted to the self-propelled device 150 for execution to
begin performing the operations otherwise performed by the
trick detection module 139, as discussed below.

Additionally or alternatively, in response to receiving the
trigger signal 126 from the latency monitor 125, the out-

US 9,483,050 B2

7

sourcing module 140 can pull outsource code 136 from the
memory 130 and submit it to a code compiler 145, which can
compile the outsource code 136 into a code package 147.
The outsourcing module 140 may determine that based on
elements of the task-oriented operations corresponding to
user control of the self-propelled device 150 (e.g., a par-
ticular aspect of gameplay or a particular experimental
application), custom code may be necessary for the self-
propelled device 150 to perform desired operations. Accord-
ingly, the outsourcing module 140 can direct this custom
code to be written by a code writer 141 of the mobile
computing device 100, or an external server over a network.
For example, the user may be operating the self-propelled
device 150 in accordance with gaming rules in which
completion of certain tasks results in associated achieve-
ments (e.g., performing maneuvers and receiving points,
completing a gaming level and instigating download of a
successive level, etc.). Based on the gaming rules, the
outsourcing module 140 can cause the code writer 141 to
write a program 143 for execution on the self-propelled
device 150. The outsourcing module 140 can further pull
code snippets 133 or other aspects from the outsource code
136 stored in the memory 130.

The written program 143 and/or the code snippets 133 can
then be transferred to the code compiler 145 for compiling
into a code package 147. Such compiling may consist of
transforming the source code (e.g., the written program 143
and the code snippets 133) into the target language of the
self-propelled device 150. Additionally or alternatively, the
code compiler 145 may compress the code package 147 and
submit the compressed code package 147 to the self-pro-
pelled device 150 via a code interface 149.

The code package 147 can be received by via a code
interface 155 of the self-propelled device 150. The code
package 147 can be decompressed and executed by an
interpretation engine 160 of the self-propelled device 150.
Upon execution, the self-propelled device 150 can begin
implementing operations otherwise performed by the mobile
computing device 100. For example, execution of the code
package 147 can cause the interpretation engine 160 to begin
receiving the sensor data 167 from the inertial measurement
unit 195 of the self-propelled device 150, and cause a cease
in transmission of such sensor data 167 to the mobile
computing device 100—thereby freeing up bandwidth for
control commands 137 and other data transmissions.

During typical operating conditions, the self-propelled
device 150 operates in control mode 182, where it passively
receives control commands 137 from the mobile computing
device 100 and the command engine 170 implements the
control commands 137 on the drive system 190. In varia-
tions, the command engine 170 itself can receive the raw
user inputs 122 and perform the translation into control
commands 137 to be implemented on the drive system 190.
When latency is detected and the code package 147 is
received by the self-propelled device 150, the interpretation
engine 160 can initiate a processing mode 184 on the
self-propelled device 150.

Initiation of the processing mode 184 can cause the
inertial measurement unit 195 to stream or intermittently
transmit the sensor data 167 to the interpretation engine 160
for processing. According to many examples, the self-
propelled device 150 can include a local memory 180 that
can also store a maneuver list (e.g., maneuver list 134). The
interpretation engine 160 can utilize the sensor data 167
from the inertial measurement unit 195 in the same or
similar manner as the trick detection module 139 of the
mobile computing device 100. Accordingly, the interpreta-

25

35

40

45

8

tion engine 160 can identify maneuvers/tricks performed by
the self-propelled device 150 based on the sensor data 167.
The interpretation engine 160 may maintain trick data 129 in
a local trick log and/or compile the trick data 129 into a
periodic message 169 to be transmitted to the mobile com-
puting device 100. In such examples, the substitution of
transmitting the periodic message 169, which includes the
trick data 129, in place of the sensor data 167, results in
significant reductions in bandwidth consumption. Thus,
latency may be reduced or eliminated, allowing for smooth
and dynamic control of the self-propelled device 150.

In variations, the interpretation engine 160 can include
additional information in the periodic message 169, such as
state information of the self-propelled device 150. Such state
information may include, but is not limited to, battery power
level, processing capacity, memory available, device status
information (e.g., faulty or malfunctioning components),
and the like.

The periodic message 169 can be received through the
communication interface 110 of the mobile computing
device 100, which may transmit the periodic message 169 to
a message parser 146 of the mobile computing device 100.
Accordingly, the periodic message 169 can be parsed by the
message parser 146 to identify maneuver information, such
as trick data 129, and other included data, such as state
information of the self-propelled device 150. The message
parser 146 can transmit the trick data 129 to the trick log
127, which may be monitored by the trick detection module
139. The trick detection module 139 can issue rewards 128
accordingly, as described above. Furthermore, parsed state
information may be transmitted to any respective compo-
nents of the mobile computing device 100 for informational
purposes or to elicit a response.

According to examples, the periodic message 169 may
include information indicating that the self-propelled device
150 is low on power, and thus an indication may be
displayed on the display 120 reflecting the low power state
of the self-propelled device 150. Additionally or alterna-
tively, the parsed state information can include an indication
that the processing capabilities of the self-propelled device
150 are being stressed by the processing mode 184. Thus,
the outsourcing module 140 may cause an alternative code
package to be compiled that alleviates some of the process-
ing performed by the interpretation engine 160 of the
self-propelled device 150. Alternatively, the outsourcing
module 140 can cause an end process signal 148 to be sent
to the self-propelled device 150 in order to deactivate the
processing mode 184, and initiate normal control mode 182,
or place the self-propelled device 150 into a sleep state.

In alternative implementations, latency can be detected by
the self-propelled device 150, which can include a number
of the components depicted in the mobile computing device
100 of FIG. 1, such as the latency monitor 125. Upon the
connection crossing a relative latency threshold 131, the
self-propelled device 150 can automatically initiate the
processing mode 184, thereby preventing sensor data 167
from being transmitted to the mobile computing device 100
outright. Thus, without any action on the part of the mobile
computing device 100, the self-propelled device 150 can
itself reduce or eliminate latency in the connection.

FIG. 2A is a high level flow chart describing an example
method of outsourcing programmatic operations to a self-
propelled device. In the below discussion of FIG. 2A,
reference may be made to like reference characters repre-
senting various features of FIG. 1 for illustrative purposes.
Furthermore, the method described in connection with FIG.
2A may be performed by the mobile computing device 100

US 9,483,050 B2

9

as illustrated in FIG. 1. Referring to FIG. 2A, the mobile
computing device 100 can initiate a control application 138
to operate the self-propelled device 150 (200). The control
application 138 may be specific to operating the self-
propelled device 150, and can cause the mobile computing
device 100 to generate a user interface (e.g., control inter-
face 121) for display on the mobile computing device 100
(202). The user interface may include virtual controls to
enable a user to operate the self-propelled device 150
through touch interactions with the virtual controls.

The user interface can also include various features cor-
responding to task-oriented operational control of the self-
propelled device 150. For example, the user interface can
include features instructing the user to perform a number of
tasks that result in a corresponding response (e.g., gaming,
research, or experimental tasks). Additionally or alterna-
tively, the user interface may be generated in accordance
with a gaming application that includes control of the
self-propelled device 150. Such a gaming application can
include, in addition to the virtual controls, various features
comprising a virtual environment or augmented reality.
Furthermore, the self-propelled device 150 may be continu-
ously detected or sensed by the mobile computing device
100, and a representation of the self-propelled device 150
may be generated in the virtual world or augmented reality
environment. Furthermore, launch of the control application
138 can cause the mobile computing device 100 to establish
a connection with the self-propelled device 150 (204). As
discussed above, the connection can be established in accor-
dance with one or more of a variety of wireless network
technologies, including Bluetooth low energy, Classic Blu-
etooth, Wireless USB, and various Wi-Fi or other wireless
standards.

The mobile computing device 100 may receive user
inputs 122 on the display 120 (206). Accordingly, the mobile
computing device 100 can include a control processor 135 to
translate the user inputs 122 into control commands 137 to
be transmitted to the self-propelled device 150 (208). In
variations, raw data corresponding to the user inputs 122
may be transmitted directly to the self-propelled device 150
for translation into control commands 137 to be imple-
mented on the drive system 190 of the self-propelled device
150. In many implementations, the established connection
between the mobile computing device 100 and the self-
propelled device 150 may have limited bandwidth (e.g.,
Bluetooth low energy). Accordingly, transmission delays or
data buffering (latency) may result from additional data
transmissions over the connection.

The mobile computing device 100 can detect the latency
in the connection (210). In response to detecting the latency,
the mobile computing device 100 can compile a code
package 147 comprised of prewritten outsource code (e.g.,
code snippets) and/or custom written code (212). The mobile
computing device may then transmit the code package 147
to the self-propelled device 150 for execution (214).

Execution of the code package 147 by the self-propelled
device 150 can cause the self-propelled device 150 to
perform certain operations otherwise performed by the
mobile computing device 100. As discussed above, such
operations may be to cease transmission of sensor data 167
to the mobile computing device 100, and instead process the
sensor data 167 internally. Accordingly, the self-propelled
device 150 can process the sensor data 167 and compile the
results in a periodic message 169 to be transmitted to the
mobile computing device 100. For example, the self-pro-
pelled device 150 can determine, from the sensor data 167,
maneuvers or tricks performed by the self-propelled device

10

15

20

25

30

35

40

45

50

55

60

65

10

150. Additionally or alternatively, the self-propelled device
150 can utilize the sensor data 167 to determine the state of
one or more components of the self-propelled device 150
and compile such state information into the periodic mes-
sage 169. In accordance with many examples, the mobile
computing device 100 can receive such periodic messages
169 from the self-propelled device 150 (216), and process
such messages 169 accordingly.

FIG. 2B is a low level flow chart describing an example
method of outsourcing programmatic operations to a self-
propelled device. In the below discussion of FIG. 2B,
reference may be made to like reference characters repre-
senting various features of FIG. 1 for illustrative purposes.
Furthermore, the low level method described in connection
with FIG. 2B may also be performed by the mobile com-
puting device 100 as illustrated in FIG. 1. In normal oper-
ating conditions, the mobile computing device 100 can
operate the self-propelled device 150 in a control mode 182,
in which control commands 137 are transmitted to the
self-propelled device 150 via a connection (e.g., Bluetooth
low energy) for implementation on the drive system 190 in
order to maneuver the self-propelled device 150 based on
user inputs 122 on the display 120 of the mobile computing
device 100. Furthermore, referring to FIG. 2B, sensor data
167 may be received continuously or intermittently from the
self-propelled device 150 (230).

According to many examples, the mobile computing
device 100 can process the sensor data 167 to determine one
or more maneuvers performed by the self-propelled device
150 (235). The mobile computing device 100 can then log
such maneuver information in a database (e.g., trick log 127)
(237). Furthermore, in gaming implementations, the mobile
computing device 100 can award points depending on the
maneuvers performed (239).

In many examples described herein, the mobile comput-
ing device 100 can detect latency in the connection (240),
which may affect smooth operation of the self-propelled
device 150. The mobile computing device 100 may compare
the latency with latency tolerability thresholds to determine
whether the latency causes undesirable interruptions in the
dynamic operation of the self-propelled device 150 (245).
For example, the transmission of the sensor data 167 may
cause delay in the transmission of some control commands
137, which can disrupt smooth operation of the self-pro-
pelled device 150. Alternatively, the mobile computing
device 100 may automatically compile the code package 147
upon any detection of latency in the connection. Compila-
tion of the code package(s) 147 and latency detection may
be performed dynamically by the mobile computing device.

If alatency threshold is not crossed (247), then the mobile
computing device 100 may continue to control the self-
propelled device 150 in control mode 182, in which sensor
data 167 are received and processed, and control commands
137 are transmitted to the self-propelled device 150. How-
ever, if the latency threshold is crossed (249), the mobile
computing device can determine which operations can be
outsourced to the self-propelled device 150 in order to free
up bandwidth in the connection (250). In some implemen-
tations—in which raw user input data is transmitted to the
self-propelled device 150 for translation—the mobile com-
puting device 100 can determine that such translations may
be performed internally. Thus, the mobile computing device
100 can perform the translation of the user inputs 122 into
control commands 137, which can reduce bandwidth con-
sumption. In equivalent or similar implementations—in
which translations are initially performed by the mobile
computing device 100—the mobile computing device 100

US 9,483,050 B2

11

can determine that transmission of the sensor data 167 is
causing disruption in control command 167 transmission.
Thus, the mobile computing device 100 can determine that
such sensor data 167 can be processed internally by the
self-propelled device 150 in order to reduce or eliminate
latency.

Accordingly, the mobile computing device 100 can com-
pile a code package 147 (255) for execution by the self-
propelled device 150 to cause the self-propelled device 150
to process the sensor data 167 and compile periodic mes-
sages 169 for transmission back to the mobile computing
device 100. In compiling the code package 147, the mobile
computing device 100 may pull outsourcing code from a
memory resource of the mobile computing device 100 or
from an external server over a network connection (257).
Additionally or as an alternative, the mobile computing
device 100 can cause customized code to be written (259),
internally or by a network server, such that execution of the
code package 147 causes the self-propelled device 150 to
perform desired operations. After compiling the code pack-
age 147, the mobile computing device 100 can transmit the
code package to the self-propelled device 150 for execution
(260). Furthermore, upon detecting that sensor data 147 is
no longer being transmitted, the mobile computing device
100 can end sensor data calculations (239).

After transmitting the code package 147 to the self-
propelled device 150, the mobile computing device 100 can
receive a message 169 periodically from the self-propelled
device 150 (265). Upon receiving the message 169, the
mobile computing device 100 can parse the message 169 to
identify the executed functions of the self-propelled device
150 (270). For example, the message 169 may contain
information regarding one or more maneuvers performed by
the self-propelled device 150 (271). Additionally, the mes-
sage 169 may contain information regarding the state of the
self-propelled device 150 (273). Such identified information
may be utilized by the mobile computing device 100 for
informational purposes or to cause an action to be performed
by one or more components of the mobile computing device
100. As an example, performed maneuvers can be logged in
a database (e.g., trick log 127) (272) and/or rewards may be
issued based on such maneuvers. Furthermore, the mobile
computing device 100 can respond to the device state
information (274), such as ending processes when the self-
propelled device 150 is in a low power state.

In continued operation, where the self-propelled device
150 operates in processing mode 184, the mobile computing
device 100 can continue to receive user inputs 122 on the
display 120 (275). In terms of user experience, the transition
by the self-propelled device 150 from control mode 182 to
processing mode 184 may be dynamic and seamless.
Accordingly, the user may have no knowledge or indication
that the processing of sensor data 167 has been outsourced
to the self-propelled device 150, and therefore continues to
operate the self-propelled device 150 in, for example, a
gaming manner. The user inputs 122 can be dynamically
translated by the mobile computing device 100 into control
commands 137, which can be transmitted to the self-pro-
pelled device 150 (280) for implementation on the drive
system 190.

Based on the transmitted control commands 137 the
self-propelled device 150 can perform maneuvers and tasks
which may be identifiable based on sensor data 167 from, for
example, the inertial measurement unit 195. As described
above, in processing mode 184, the self-propelled device
150 can process such sensor data 167 and compile a message
169 for transmission to the mobile computing device 100.

10

15

20

25

30

35

40

45

50

55

60

65

12

Thus, the mobile computing device 100 can periodically
receive such messages 169, based on the transmitted control
commands 137 (265), which can contain processed infor-
mation, such as maneuver data and state information.

In some variations, when the user wishes to end a control
session, the user may interact with the mobile computing
device 100 accordingly. Alternatively, the control session
may be ended automatically in response to an event, such as
a low battery event on the self-propelled device 150, or the
end of a certain element of gameplay. As such, the mobile
computing device 100 can receive an input to end the session
(285). In response to a user input or respective event, the
mobile computing device 100 can transmit end commands to
the self-propelled device 150 to cause the self-propelled
device 150 to power down components and enter a sleep
mode (290). Optionally, the end commands may include
instructions to delete the executed code package 147 trans-
mitted to the self-propelled device 150. After transmitting
such end commands, the mobile computing device 100 can
disable the connection and close the control application 138
(295).

Example Self-Propelled Device

FIG. 3A illustrates schematic diagram of an example
self-propelled device 300 upon which examples described
herein may be implemented. However, variations of the
present disclosure are not limited to such devices. Rather,
the systems and methods described herein can be imple-
mented with respect to any remote device in which pairings
or connections are made. Referring to FIG. 3A, the self-
propelled device 300 can be of a size and weight allowing
it to be easily grasped, lifted, and carried in an adult human
hand. The self-propelled device 300 can include an outer
spherical shell (or housing) 302 that makes contact with an
external surface as the device maneuvers. In addition, the
self-propelled device 300 can include an inner surface 304
of'the outer shell 302. Additionally, the self-propelled device
300 can include several mechanical and electronic compo-
nents enclosed by outer shell 302 and inner surface 304
(collectively known as the envelope).

The outer shell 302 and inner surface 304 can be com-
posed of a material that transmits signals used for wireless
communication, and yet are impervious to moisture and dirt.
The envelope material can be durable, washable, and/or
shatter resistant. The envelope may also be structured to
enable transmission of light and is textured to diffuse the
light.

In one variation, the housing is made of sealed polycar-
bonate plastic. In one example, at least one of the outer shell
302 or inner surface 304 are textured to diffuse light. In one
example, the envelope comprises two hemispherical shells
with an associated attachment mechanism, such that the
envelope can be opened to allow access to the internal
electronic and mechanical components.

Several electronic and mechanical components are
located inside the envelope for enabling processing, wireless
communication, propulsion and other functions (collectively
referred to as the “interior mechanism”). Among the com-
ponents, examples include a drive system 301 to enable the
device to propel itself. The drive system 301 can be coupled
to processing resources and other control mechanisms, as
described with other examples. The carrier 314 serves as the
attachment point and support for components of the interior
mechanism. The components of the interior mechanism are
not rigidly attached to the envelope. Instead, the interior
mechanism can be in frictional contact with the inner surface
304 at selected points, and is movable within the envelope
by the action of actuators of the drive mechanism.

US 9,483,050 B2

13

The carrier 314 can be in mechanical and electrical
contact with an energy storage 316. The energy storage 316
provides a reservoir of energy to power the device 300 and
electronics and can be replenished through N inductive
charge port 326. The energy storage 316, in one example, is
a rechargeable battery. In one variation, the battery is
composed of lithium-polymer cells. In other variations,
other rechargeable battery chemistries are used.

The carrier 314 can provide the mounting location for
most of the internal components, including printed circuit
boards for electronic assemblies, sensor arrays, antennas,
and connectors, as well as providing a mechanical attach-
ment point for internal components.

The drive system 301 includes motors 322, 324 and
wheels 318, 320. The motors 322 and 324 connect to the
wheels 318 and 320, respectively, each through an associ-
ated shaft, axle, and gear drive (not shown). The perimeter
of wheels 318 and 320 can be two points where the interior
mechanism can be in mechanical contact with inner surface
304. The points where wheels 318 and 320 contact inner
surface 304 are an essential part of the drive mechanism of
the ball, and so are preferably coated with a material to
increase friction and reduce slippage. For example, the
wheels 318 and 320 can be covered with silicone rubber
tires.

In some variations, a biasing mechanism is provided to
actively force the wheels 318, 320 against the inner surface
304. In an example provided, the spring 312 and end 310 can
comprise a biasing mechanism. More specifically, spring
312 and spring end 310 are positioned to contact inner
surface 304 at a point diametrically opposed to wheels 318
and 320. Spring 312 and end 310 provide additional contact
force to reduce slippage of the wheels 318 and 320, par-
ticularly in situations where the interior mechanism is not
positioned with the wheels at the bottom and where gravity
does not provide adequate force to prevent the drive wheels
from slipping. The spring 312 is selected to provide a small
force pushing wheels 318 and 320, and the spring end 310
evenly against inner surface 304.

The spring end 310 is designed to provide near-friction-
less contact with inner surface 304. The spring end 310
comprises a rounded surface configured to mirror a low-
friction contact region at all contact points with the inner
surface 304. Additional means of providing near-frictionless
contact may be provided. In another implementation, the
rounded surface may include one or more bearings to further
reduce friction at the contact point where end 310 moves
along inner surface 304. The spring 312 and the spring end
310 are preferably made of a non-magnetic material to avoid
interference with sensitive magnetic sensors.

FIG. 3B is a block diagram illustrating an example
self-propelled device upon which one or more example
described herein may be implemented. For example, the
self-propelled device 350 as depicted in FIG. 3B, may
correspond to the self-propelled device 150 as depicted in
FIG. 1. However, examples described herein are not limited
to the self-propelled devices described herein. Accordingly,
the disclosed processes may be implemented on any con-
trollable device upon which processes may be outsourced.
Referring to FIG. 3B, the self-propelled device 350 can
include a signal interface 365 to receive information and
data from a mobile computing device. The self-propelled
device 350 may be under operational control of the mobile
computing device in a control mode 382. In some examples,
the self-propelled device 350, in control mode 382, can
receive raw input data 368 from the mobile computing
device, and transmit the raw input data 368 to a command

20

25

30

40

45

50

14

engine 370, which may execute logic to translate the raw
input data 368 into control commands 367 to be imple-
mented on a drive system 390 of the self-propelled device
350 to cause the self-propelled device 350 to maneuver
based on the raw input data 368. As provided herein, the raw
input data 368 may be raw data directly associated with user
interactions performed on a user interface of the mobile
computing device.

Alternatively, the signal interface 365 can receive the
control commands 367 directly from the mobile computing
device, in which such raw input data 368 has already been
translated by the mobile computing device. The control
engine 370 can utilize the control commands 367 for imple-
mentation upon the drive system 390, thereby causing the
self-propelled device 350 to maneuver accordingly. In con-
trol mode 382, the self-propelled device 350 can submit
sensor data 397 from, for example, an inertial measurement
unit 395, to the mobile computing device for processing.
Such sensor data 397 may indicate the state of the self-
propelled device, and/or maneuvers (e.g., tricks) performed
by the self-propelled device.

In some examples, the self-propelled device 350 can
include a latency monitor, and upon detection of latency in
the connection between the self-propelled device 350 and
the mobile computing device, the self-propelled device may
automatically enter processing mode 384, as discussed
below. In other examples, the mobile computing device
detects latency in the connection and compiles a code
package 369. The code package 369 can be received via, for
example, the signal interface 365 of the self-propelled
device 350, and transmitted to an interpretation engine 360.
The interpretation engine 360 can decompress and/or
execute the code package 369, which may cause the self-
propelled device 350 to enter processing mode 384 in order
to perform one or more processes outsourced from the
mobile computing device.

In variations, the executed code package 369 can instruct
the self-propelled device 350 to cease translation of raw
input data 368 into control commands 367. In response, the
mobile computing device can begin performing such trans-
lations and transmit control commands 367, which require
less bandwidth to transmit.

Additionally or alternatively, the executed code package
369 can cause the self-propelled device 350 to cease trans-
mission of sensor data 397 to the mobile computing device
in order to consume less bandwidth. However, such sensor
data 397 may contain valuable information for task-oriented
operations of the self-propelled device 350 (e.g., experimen-
tation or gameplay). Thus, the code package 369 may
include instructions to be executed by the interpretation
engine 360, causing the interpretation engine 360 to process
the sensor data 397, as opposed to the mobile computing
device. Thus, the interpretation engine 360 can perform
calculations based on the sensor data 397 to determine, for
example, maneuvers performed by the self-propelled device
350. As such, the self-propelled device 350 may include a
memory 380 storing a maneuver table 386 (e.g., a look-up
table) that correlates sensor data 397 to predefined maneu-
vers. Alternatively, the maneuver table 386 may be included
in the code package 369 received from the mobile comput-
ing device.

The determined maneuvers can be compiled as maneuver
information 363 and transmitted to a messaging module 375
of'the self-propelled device 350. The messaging module 375
can create a message 377 to be transmitted to the mobile
computing device which includes the maneuver information

US 9,483,050 B2

15

363. Furthermore, the messaging module 375 can insert
other information into the message 377, such as state infor-
mation as described herein.

Thus, by performing operations otherwise performed by
the mobile computing device (i.e., sensor data processing),
and by outsourcing operations performed by the self-pro-
pelled device 350 (i.e., raw input data translation), latency in
the connection between the mobile computing device and
the self-propelled device 350 can be significantly reduced or
eliminated. Further operations performed by the self-pro-
pelled device are discussed below with respect to FIGS.
4A-4B.

FIGS. 4A-4B are flow charts describing example opera-
tions performed by a self-propelled device in control mode
and a processing mode, in accordance with one or more
examples described herein. In the below discussion of FIGS.
4A-4B, reference may be made to like reference characters
representing various features of FIG. 3B for illustrative
purposes. Furthermore, the methods described in connection
with FIGS. 4A-4B may also be performed by the self-
propelled device 350 as illustrated in FIG. 3B. Referring to
FIG. 4A, the self-propelled device 350 can initially operate
in a control mode (400) by receiving a connection signal
from a mobile computing device (405). The connection
signal can cause a connection (e.g., a Bluetooth low energy
connection) to be established between the self-propelled
device 350 and the mobile computing device.

Accordingly to many examples, the self-propelled device
350 may then receive control commands 367 from the
mobile computing (415), and then implement the control
commands 367 on the internal drive system 390 (420)
thereby causing the self-propelled device 350 to maneuver
based on user interactions with the mobile computing
device. Additionally, the self-propelled device 350 may
transmit sensor data 397 to the mobile computing device for
processing (425), as discussed herein.

Based on a detected latency in the connection, the self-
propelled device 350 may receive a code package 369 from
the mobile computing device. The code package 369 can
include instructions that ultimately cause the latency in the
connection to be reduced or eliminated by limiting the data
that is transmitted over the connection and/or prioritizing
transmission of the control commands 367. Accordingly, the
self-propelled device 350 can execute the code package 369
to initiate processing mode 384 (435).

Referring to FIG. 4B, upon execution of the code package
369, the self-propelled device 350 begin to perform opera-
tions in processing mode (400) that would otherwise be
performed by the mobile computing device. Furthermore,
the transition from control mode 382 to processing mode
384 may be instigated seamlessly so as to cause little or no
disruption in the dynamic control of the self-propelled
device 350 by the user. Thus, the self-propelled device 350
may continue to receive control commands 367 from the
mobile computing device (445), and then implement the
control commands 367 on the internal drive system 390, as
provided herein (450).

In processing mode (400), the self-propelled device 350
can receive sensor data 397 from its own inertial measure-
ment unit 395 (455). For example, the self-propelled device
350 can include an interpretation engine 360 that can
analyze the sensor data 397 to dynamically determine
maneuvers performed by the self-propelled device 350
(460). Such dynamic determinations may be made by per-
forming calculations on raw sensor data 397 (461), or
running such sensor data 397 through an algorithm, in order
to produce solutions identifying maneuvers performed.

10

15

20

25

30

35

40

45

50

55

60

65

16

Additionally or alternatively, the interpretation engine 360
can perform a look-up in a look-up table (463) that correlates
sensor data 397, raw or processed, with predefined maneu-
vers.

In many examples, the self-propelled device 350 can
compile a periodic message 377 to be transmitted to the
mobile computing device (465). The periodic message 377
can include maneuver information 363 (467) and/or state
information (469) describing the state of one or more
components of the self-propelled device 350. Accordingly,
the self-propelled device 350 can periodically compile such
messages 377 and transmit them to the mobile computing
device over the connection (470). When a control session
(e.g., gameplay session) is ended, the self-propelled device
350 can receive an end command signal from the mobile
computing device (475), and consequently end processing
operations and power down various components to enter a
sleep mode (480).

Hardware Diagram

FIG. 5 is a block diagram that illustrates a computer
system upon which examples described may be imple-
mented. For example, one or more components discussed
with respect to the systems and the methods described herein
may be performed by the system 500 of FIG. 5. The systems
and methods described can also be implemented using a
combination of multiple computer systems as described by
FIG. 5.

In one implementation, the computer system 500 includes
processing resources 510, a main memory 520, ROM 530,
a storage device 540, a communication interface 550, and a
display 560. The computer system 500 includes at least one
processor 510 for processing information and a main
memory 520, such as a random access memory (RAM) or
other dynamic storage device, for storing information and
instructions 522 to be executed by the processor 510. The
main memory 520 also may be used for storing temporary
variables or other intermediate information during execution
of instructions to be executed by the processor 510. The
computer system 500 may also include a read only memory
(ROM) 530 or other static storage device for storing static
information and instructions for the processor 510. A storage
device 540, such as a magnetic disk or optical disk, is
provided for storing information and instructions. For
example, the storage device 540 can correspond to a com-
puter-readable medium that store, for example, the maneu-
ver list 544 and the trick log 546 for performing operations
discussed with respect to FIGS. 1-4.

The communication interface 550 can enable computer
system 500 to communicate with a self-propelled device
(e.g., cellular or Wi-Fi network) through use of a network
link (wireless or wire line). Using the network link, the
computer system 500 can communicate with a plurality of
devices, such as the self-propelled device 150. The main
memory 520 of the computer system 500 can further store
the control application 522 which can be launched by the
processor 510. According to some examples, launch of the
control application can cause a connection signal 554 to be
transmitted to the self-propelled device. Furthermore, the
computer system 500 can receive, via the communication
interface 550, sensor data 556 from the self-propelled
device. Accordingly, the processor 510 can perform sensor
data processing 514 on the sensor data 556 in order to
determine maneuvers performed by the self-propelled
device. Additionally or as an alternative, the processor 510
can utilize a maneuver list 544 that correlates processed
sensor data to maneuvers, and log such maneuvers in a trick
log 546.

US 9,483,050 B2

17

During operational control of the self-propelled device,
the computer system 500 can detect latency in the connec-
tion, and in response to the latency exceeding a threshold,
the processor can begin code packaging 512 in order to
outsource processing to the self-propelled device. Thus, in
addition to sending control commands 552, the computer
system can send a code package 555 to the self-propelled
device for execution. Execution of the code package 555 by
the self-propelled device can cause the self-propelled device
to perform sensor data processing 514, thereby eliminating
the need to transmit sensor data 556 over the connection.
However, in order to maintain and update the trick log 546,
the self-propelled device can transmit a periodic message
558 that identifies maneuvers performed by the self-pro-
pelled device.

Examples described herein are related to the use of
computer system 500 for implementing the techniques
described herein. According to one example, those tech-
niques are performed by computer system 500 in response to
processor 510 executing one or more sequences of one or
more instructions contained in main memory 520, such as
the control application 522. Such instructions may be read
into main memory 520 from another machine-readable
medium, such as storage device 540. Execution of the
sequences of instructions contained in main memory 520
causes processor 510 to perform the process steps described
herein. In alternative implementations, hard-wired circuitry
and/or hardware may be used in place of or in combination
with software instructions to implement examples described
herein. Thus, the examples described are not limited to any
specific combination of hardware circuitry and software.

CONCLUSION

It is contemplated for examples described herein to extend
to individual elements and concepts described herein, inde-
pendently of other concepts, ideas or system, as well as for
examples to include combinations of elements recited any-
where in this application. Although examples are described
in detail herein with reference to the accompanying draw-
ings, it is to be understood that this disclosure is not limited
to those precise examples. As such, many modifications and
variations will be apparent to practitioners skilled in this art.
Accordingly, it is intended that the scope of this disclosure
be defined by the following claims and their equivalents.
Furthermore, it is contemplated that a particular feature
described either individually or as part of an example can be
combined with other individually described features, or
parts of other examples, even if the other features and
examples make no mentioned of the particular feature. Thus,
the absence of describing combinations should not preclude
the inventor from claiming rights to such combinations.

Although illustrative examples have been described in
detail herein with reference to the accompanying drawings,
variations to specific examples and details are encompassed
by this disclosure. It is intended that the scope of the
invention is defined by the following claims and their
equivalents. Furthermore, it is contemplated that a particular
feature described, either individually or as part of an
example, can be combined with other individually described
features, or parts of other examples. Thus, absence of
describing combinations should not preclude the inventor(s)
from claiming rights to such combinations.

While certain examples have been described above, it will
be understood that the examples described are by way of
example only. Accordingly, this disclosure should not be
limited based on the described examples. Rather, the scope

10

15

20

25

30

40

45

55

18

of'the disclosure should only be limited in light of the claims
that follow when taken in conjunction with the above
description and accompanying drawings.

What is claimed is:

1. A method for outsourcing processing, the method
performed by one or more processors of a mobile computing
device and comprising:

receiving, on a touch-sensitive display of the mobile

computing device, user inputs to control operation of a
self-propelled device;

transmitting control commands corresponding to the user

inputs to the self-propelled device;
compiling a computer code package to outsource, to the
self-propelled device, one or more operations per-
formed by the mobile computing device; and

transmitting the computer code package to the self-pro-
pelled device for execution to perform the one or more
operations.

2. The method of claim 1, further comprising:

prior to transmitting the computer code package, and

during operation of the self-propelled device, (i) receiv-
ing sensor data from the self-propelled device, and (ii)
based on the sensor data, determining at least one
maneuver, from a plurality of predefined maneuvers,
performed by the self-propelled device.

3. The method of claim 2, wherein respective transmis-
sions of the control commands, the computer code package,
and the sensor data between the mobile computing device
and the self-propelled device are performed over a BLU-
ETOOTH® low energy connection.

4. The method of claim 3, wherein the BLUETOOTH®
low energy connection is established upon launch of a
control application, on the mobile computing device, spe-
cific to operating the self-propelled device, and wherein the
mobile computing device is to dynamically monitor for
latency in the BLUETOOTH® low energy connection, and
dynamically compile computer code to be outsourced for
execution by the self-propelled device based on the dynami-
cally monitored latency.

5. The method of claim 1, further comprising:

detecting latency between the mobile computing device

and the self-propelled device;

wherein compiling the computer code package is per-

formed based on detecting the latency.

6. The method of claim 2, further comprising:

subsequent to transmitting the computer code package,

receiving, from the self-propelled device executing the
computer code package, a periodic message identifying
one or more maneuvers, from the plurality of pre-
defined maneuvers, performed by the self-propelled
device;

wherein execution of the computer code package by the

self-propelled device causes processing resources of
the self-propelled device to (i) determine, based on
sensor data from a plurality of sensors of the self-
propelled device, the one or more maneuvers per-
formed by the self-propelled device, and (ii) compile
the periodic message to include a description of the one
Or more maneuvers.

7. The method of claim 6, wherein the plurality of
predefined maneuvers comprises predefined tricks per-
formed by the self-propelled device while under control of
the mobile computing device.

8. The method of claim 2, wherein the received sensor
data corresponds to measurements performed by an inertial
measurement unit of the self-propelled device, and wherein
the mobile computing device determines the at least one

US 9,483,050 B2

19

maneuver performed by the self-propelled device by com-
paring the measurements to a maneuver list comprising
correlated data between inertial measurements and each of
the plurality of predefined maneuvers.

9. A computer-implemented method for facilitating pro-
cessing operations, the method performed by one or more
processors of a self-propelled device and comprising:

receiving control commands from a mobile computing

device;

implementing the control commands on an internal drive

mechanism of the self-propelled device to maneuver
the self-propelled device;

based on a detected latency between the mobile comput-

ing device and the self-propelled device, receiving a
computer code package from the mobile computing
device; and

executing the computer code package to offset processing

operations performed by the mobile computing device.
10. The method of claim 9, further comprising:
prior to receiving the computer code package, and while
implementing the control commands on the internal
drive mechanism, transmitting sensor data to the
mobile computing device, the sensor data indicating at
least one maneuver, from a plurality of predefined
maneuvers, performed by the self-propelled device.
11. The method of claim 10, wherein respective transmis-
sions of the control commands, the computer code package,
and the sensor data between the mobile computing device
and the self-propelled device are performed over a BLU-
ETOOTH® low energy connection, and wherein the
detected latency corresponds to a delay caused by the
respective transmissions.
12. The method of claim 10, wherein executing the
computer code package comprises:
determining, based on the sensor data, one or more
maneuvers, from the plurality of predefined maneuvers,
performed by the self-propelled device; and

transmitting a periodic message to the mobile computing
device, the periodic message identifying the one or
more maneuvers performed by the self-propelled
device.

13. A mobile computing device comprising:

a touch-sensitive display;

one or more processors; and

one or more memory resources storing instructions for

outsourcing processing, wherein the instructions, when

executed by the one or more processors, cause the

mobile computing device to:

receive, on the touch-sensitive display of the mobile
computing device, user inputs to control operation of
a self-propelled device;

transmit control commands corresponding to the user
inputs to the self-propelled device;

detect latency between the mobile computing device
and the self-propelled device;

based on the detected latency, compile a computer code
package to outsource, to the self-propelled device,
one or more operations performed by the mobile
computing device; and

40

45

55

20

transmit the computer code package to the self-pro-
pelled device for execution to perform the one or
more operations.

14. The mobile computing device of claim 13, wherein the
executed instructions further cause the mobile computing
device to:

prior to transmitting the computer code package, and

during operation of the self-propelled device, (i)
receive sensor data from the self-propelled device, and
(i1) based on the sensor data, determine at least one
maneuver, from a plurality of predefined maneuvers,
performed by the self-propelled device.

15. The mobile computing device of claim 14, wherein
respective transmissions of the control commands, the com-
puter code package, and the sensor data between the mobile
computing device and the self-propelled device are per-
formed over a BLUETOOTH® low energy connection, and
wherein the detected latency corresponds to a delay caused
by the respective transmissions.

16. The mobile computing device of claim 15, wherein the
BLUETOOTH® low energy connection is established upon
launch of a control application, on the mobile computing
device, specific to operating the self-propelled device, and
wherein the mobile computing device is to dynamically
monitor for latency in the BLUETOOTH® low energy
connection, and dynamically compile computer code to be
outsourced for execution by the self-propelled device based
on the dynamically monitored latency.

17. The mobile computing device of claim 14, wherein the
executed instructions further cause the mobile computing
device to:

receive, from the self-propelled device executing the

computer code package, a periodic message identifying
one or more maneuvers, from the plurality of pre-
defined maneuvers, performed by the self-propelled
device.

18. The mobile computing device of claim 17, wherein
execution of the computer code package by the self-pro-
pelled device causes processing resources of the self-pro-
pelled device to (i) determine, based on sensor data from a
plurality of sensors of the self-propelled device, the one or
more maneuvers performed by the self-propelled device,
and (ii) compile the periodic message to include a descrip-
tion of the one or more maneuvers.

19. The mobile computing device of claim 17, wherein the
plurality of predefined maneuvers comprises predefined
tricks performed by the self-propelled device while under
control of the mobile computing device.

20. The mobile computing device of claim 14, wherein the
received sensor data corresponds to measurements per-
formed by an inertial measurement unit of the self-propelled
device, and wherein the mobile computing device deter-
mines the at least one maneuver performed by the self-
propelled device by comparing the measurements to a
maneuver list comprising correlated data between inertial
measurements and each of the plurality of predefined
maneuvers.

